International Centre for Global Earth Models (ICGEM)

http://icgem.gfz-potsdam.de

Director: Franz Barthelmes (Germany)

Overview

The International Centre for Global Earth Models was established in 2003 and this year is its 10th anniversary.

It is mainly a web based service and comprehends:
- collecting and long-term archiving of existing global gravity field models; solutions from dedicated time periods (e.g. monthly GRACE models) are included
- making them available on the web in a standardised format (self-explanatory)
- interactive visualisation of the models (geoid undulations and gravity anomalies)
- animated visualization of monthly GRACE models
- web-interface to calculate gravity functionals from the spherical harmonic models on freely selectable grids (filtering included)
- theory and formulas of the calculation service in STR09/02 (downloadable)
- the ICGEM web-based discussion forum (answering questions)
- evaluation of the models
- visualisation of surface spherical harmonics as tutorial

Thanks to the availability of the new release of the 10-years monthly model series from GRACE, the static models from the recent GOCE mission, and their combined models of high spatial resolution, the importance of gravity field functionals for nearly all geosciences is rising permanently. In addition to its use for educational purposes, ICGEM helps researchers from different geoscientific fields to overcome the first obstacles in using these models and to get acquainted with the mathematical representation of gravity field in terms of spherical harmonic series. In this way ICGEM enables and stimulates the research based on these products, which are primarily the result of rapid and fruitful development of the satellite based geodetic gravity field determination methods in the past decades.

Services

The Models

Currently, 135 models are listed with their references and 121 of them are available in form of spherical harmonic coefficients. If available, the link to the original model web site has been added. Models from dedicated time periods (e.g. monthly solutions from GRACE) of CSR, JPL, CNES/GRGS and GFZ are also available.

The Format

The spherical harmonic coefficients are available in a standardised self-explanatory format which has been accepted by ESA as the official format for the GOCE project.
The Visualisation

An online interactive visualisation of the models (height anomalies and gravity anomalies) as illuminated projection on a freely rotatable sphere is available (fig. 1). Differences of two models, arbitrary degree windows, zooming in and out, are possible. To get an impression of the time variations there is an animation of the monthly solutions (fig. 2). The visualisation of single spherical harmonics is possible for tutorial purposes.

Fig. 1: Visualisation of a global gravity field model, geoid undulations (left) and gravity anomalies (right)

Fig. 2: Snapshot from the animation of the monthly models: geoid differences of the model for November 2010 to the mean model EIGEN-6S. Visible are the effect of mass loss (blue) due to deglaciation during the last years in Greenland and Alaska (eyes ☀), as well as the snapshot of the annual hydrological mass variations in the basin of the Amazon (mouth ☀), and the effect of increasing mass (red) due to postglacial uplift in North America (nose ☀).
The Calculation Service

A web-interface to calculate gravity functionals from the spherical harmonic models on freely selectable grids, with respect to a reference system of the user’s choice, is provided. The following functionals are available:

- pseudo height anomaly on the ellipsoid (or at arbitrary height over the ellipsoid)
- height anomaly (on the Earth’s surface as defined)
- geoid height (height anomaly plus spherical shell approximation of the topography)
- gravity disturbance
- gravity disturbance in spherical approximation (at arbitrary height over the ellipsoid)
- gravity anomaly (classical and modern definition)
- gravity anomaly (in spherical approximation, at arbitrary height over the ellipsoid)
- simple Bouguer gravity anomaly
- gravity on the Earth’s surface (including the centrifugal acceleration)
- gravity on the ellipsoid (or at arbitrary height over the ellipsoid, including the centrifugal acceleration)
- gravitation on the ellipsoid (or at arbitrary height over the ellipsoid, without centrifugal acceleration)
- potential on the ellipsoid (or at arbitrary height over the ellipsoid, without centrifugal potential)
- second derivative in spherical radius direction of the potential (at arbitrary height over the ellipsoid)
- equivalent water height (water column)

Fig. 3: Input mask of the calculation service
Filtering is possible by selecting the maximum degree of the used coefficients or the filter length of a Gaussian averaging filter. The models from dedicated time periods (e.g. coefficients of monthly solutions from GRACE) are also available after non-isotropic smoothing (decorrelation). The calculated grids (self-explanatory format) and corresponding plots (postscript) are available for download after a few seconds or a few minutes depending on the functional, the maximum degree and the number of grid points.

Figure 3 shows the input mask of the calculation service and figures 4 to 6 show examples of plots (of grids) generated by the calculation service.

Fig. 4: Example of grid and plot generation by the calculation service: gravitation along the equatorial cross section on the ellipsoid (left), and 36000 km above the ellipsoid (right) from the model EIGEN-6C2

Fig. 5: Example of grid and plot generation by the calculation service: gravity disturbances of the Chicxulub crater region from the model EGM2008
Fig. 6: Example of grid and plot generation by the calculation service: global geoid undulations from the model EIGEN-6C2 (with respect to WGS84)

Evaluation

For a concise evaluation of the models, comparisons with GPS-levelling data and with the most recent combination model in the spectral domain are provided (see figures 7 and 8). A visualisation of the improvement of the satellite-only models over the past decades is also provided (fig. 9).

<table>
<thead>
<tr>
<th>Model</th>
<th>Nmax</th>
<th>USA 6169 points</th>
<th>Canada 1930 points</th>
<th>Europe 1235 points</th>
<th>Australia 201 points</th>
<th>Japan 816 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIGEN-6C2</td>
<td>1949</td>
<td>0.249 m</td>
<td>0.127 m</td>
<td>0.212 m</td>
<td>0.214 m</td>
<td>0.080 m</td>
</tr>
<tr>
<td>DGM-1S</td>
<td>250</td>
<td>0.441 m</td>
<td>0.352 m</td>
<td>0.430 m</td>
<td>0.366 m</td>
<td>0.513 m</td>
</tr>
<tr>
<td>GOCO03S</td>
<td>250</td>
<td>0.428 m</td>
<td>0.340 m</td>
<td>0.418 m</td>
<td>0.355 m</td>
<td>0.500 m</td>
</tr>
<tr>
<td>GO_CONS_GCF_2_DIR_R3</td>
<td>240</td>
<td>0.431 m</td>
<td>0.347 m</td>
<td>0.423 m</td>
<td>0.355 m</td>
<td>0.506 m</td>
</tr>
<tr>
<td>GO_CONS_GCF_2_TIM_R3</td>
<td>250</td>
<td>0.430 m</td>
<td>0.343 m</td>
<td>0.417 m</td>
<td>0.357 m</td>
<td>0.496 m</td>
</tr>
<tr>
<td>EIGEN-6C</td>
<td>1420</td>
<td>0.247 m</td>
<td>0.135 m</td>
<td>0.214 m</td>
<td>0.219 m</td>
<td>0.082 m</td>
</tr>
<tr>
<td>GIF48</td>
<td>360</td>
<td>0.319 m</td>
<td>0.230 m</td>
<td>0.276 m</td>
<td>0.236 m</td>
<td>0.275 m</td>
</tr>
<tr>
<td>EIGEN-6S</td>
<td>240</td>
<td>0.446 m</td>
<td>0.373 m</td>
<td>0.449 m</td>
<td>0.397 m</td>
<td>0.520 m</td>
</tr>
<tr>
<td>GOCO03S</td>
<td>250</td>
<td>0.435 m</td>
<td>0.352 m</td>
<td>0.434 m</td>
<td>0.371 m</td>
<td>0.516 m</td>
</tr>
<tr>
<td>AUB-GRACE03S</td>
<td>160</td>
<td>0.650 m</td>
<td>0.514 m</td>
<td>0.713 m</td>
<td>0.486 m</td>
<td>0.835 m</td>
</tr>
<tr>
<td>GO_CONS_GCF_2_DIR_R2</td>
<td>240</td>
<td>0.443 m</td>
<td>0.374 m</td>
<td>0.449 m</td>
<td>0.391 m</td>
<td>0.519 m</td>
</tr>
<tr>
<td>GO_CONS_GCF_2_TIM_R2</td>
<td>250</td>
<td>0.436 m</td>
<td>0.355 m</td>
<td>0.434 m</td>
<td>0.375 m</td>
<td>0.515 m</td>
</tr>
<tr>
<td>EIGEN-6C</td>
<td>1420</td>
<td>0.247 m</td>
<td>0.135 m</td>
<td>0.214 m</td>
<td>0.219 m</td>
<td>0.082 m</td>
</tr>
<tr>
<td>GIF48</td>
<td>360</td>
<td>0.319 m</td>
<td>0.230 m</td>
<td>0.276 m</td>
<td>0.236 m</td>
<td>0.275 m</td>
</tr>
<tr>
<td>EIGEN-6S</td>
<td>240</td>
<td>0.446 m</td>
<td>0.373 m</td>
<td>0.449 m</td>
<td>0.397 m</td>
<td>0.520 m</td>
</tr>
<tr>
<td>GOCO03S</td>
<td>250</td>
<td>0.435 m</td>
<td>0.352 m</td>
<td>0.434 m</td>
<td>0.371 m</td>
<td>0.516 m</td>
</tr>
<tr>
<td>AUB-GRACE03S</td>
<td>160</td>
<td>0.650 m</td>
<td>0.514 m</td>
<td>0.713 m</td>
<td>0.486 m</td>
<td>0.835 m</td>
</tr>
<tr>
<td>GO_CONS_GCF_2_DIR_R2</td>
<td>240</td>
<td>0.443 m</td>
<td>0.374 m</td>
<td>0.449 m</td>
<td>0.391 m</td>
<td>0.519 m</td>
</tr>
<tr>
<td>GO_CONS_GCF_2_TIM_R2</td>
<td>250</td>
<td>0.436 m</td>
<td>0.355 m</td>
<td>0.434 m</td>
<td>0.375 m</td>
<td>0.515 m</td>
</tr>
<tr>
<td>GO_CONS_GCF_2_DIR_R1</td>
<td>240</td>
<td>0.407 m</td>
<td>0.319 m</td>
<td>0.402 m</td>
<td>0.319 m</td>
<td>0.489 m</td>
</tr>
<tr>
<td>GO_CONS_GCF_2_TIM_R1</td>
<td>224</td>
<td>0.455 m</td>
<td>0.378 m</td>
<td>0.474 m</td>
<td>0.371 m</td>
<td>0.578 m</td>
</tr>
<tr>
<td>GO_CONS_GCF_2_SPW_R1</td>
<td>210</td>
<td>0.471 m</td>
<td>0.390 m</td>
<td>0.498 m</td>
<td>0.384 m</td>
<td>0.569 m</td>
</tr>
</tbody>
</table>

Fig. 7: Table (truncated) of comparison of the models with GPS-levelling: Root mean square (rms) about mean of GPS / levelling minus gravity field model derived geoid heights [m]
Fig. 9: Visualisation of the improvement of satellite-only models over the past decades:
Geoid differences to the model EIGEN-6C2 as a function of spatial resolution.

Fig. 8: Comparison of the models in the spectral domain (e.g.: GO_CONS_GCF_2_DIR_R4) with one of the most recent combination models (e.g. EIGEN-6C2)
Publications

